
A Map-Folding Problem

By W. F. Lunnon

Abstract. An algorithm is described to compute the number of ways of folding a
one-dimensional map, and a table of values given.

Introduction. In how many ways can a map be folded up? What follows is re-
stricted to the one-dimensional problem, that is: Given a plane chain ('map') of p
equal segments ('leaves') jointed together, in how many ways ('p-foldings') G(p) can
it be rigidly collapsed into one segment? For example G(3) = 6, (see the figures (1)-
(6) and the table (31)). In the figures, the free edge of the 'front cover' is tagged with
a dot; by turning the folding round (in the plane) or over (out of the plane), this tag
can always be arranged on the left and pointing upwards. We shall assume it to be
so.

___ I _ . I. --I 1 ___ I _ ___
I__ ., __ 1 1 ___ 1 __ __ I ___I

(1) (2) (3) (4) (5) (6)

The leaves can be numbered 1, 2, * , p in natural order from the front, and in
any particular folding they can also be numbered by position from the top; e.g., the
figure (3) has leaves 1, 2, 3 in positions 2, 3, 1. So to each folding there corresponds a
unique permutation which (as well as its inverse) describes the folding in a natural
mathematical fashion. This fact seems of no great utility.

The problem can be restricted by requiring that the two free ends of the map be
joined together, creating a closed chain. Here one approach to enumeration would be
to first flatten the map into a 'tree' with I2p branches, then manipulate this tree into
a folding (a generalisation of the original problem for hp).

The Theory. G(p) can be computed by simple enumeration, and we have found
no radical improvement on this method. But for given p we can 'reduce' the set of
all foldings to a subset, i.e., construct an equivalence relation over the set and then
enumerate just one from each equivalence class.

There are several such equivalences of order 2 : e.g., in the figures (1)-(3) the
first crease (between leaf 1 and 2) turns down, but in (4)-(6) up; and, in general, just
half the foldings turn down at the first crease, so we need only enumerate this subset.

It follows that 2 divides G(p). It is observed empirically (table (34)) that 2p
divides G(p), which suggests an equivalence of order 2p. We shall prove the divisi-
bility and demonstrate the subset.

Received November 2, 1966.

193

194 W. F. LUNNON

* ___ _ _ _

_ _ _ I I . l _ _ _ l l _ _I _ _

___I ____I 1 I ____ 1

(7) ()(9) (10) (1

Consider figure (7). Leaf 3 is in position 4. Let it be translated supernaturally
through the other leaves to position 1, dragging its creases (connections to leaves 2
and 4) with it, and move all the other leaves down one position to make room. The
result is figure (8). We call this operation 'rotation': (8) rotates to give (9), and so on
till (11) = (7) again. In defiance of the well-known law that maps never fold up so
that the front cover is on top, we shall call such a folding 'normal'-figure (7) is
normal. Suppose we take the set of all normal foldings and rotate it k - 1 times,
where 1 _ k < p; the result will be the set of all foldings whose first leaf is in
position k. So all these sets contain the same number of foldings, G(p)/p, since there
are p possible values of k.

* 0

y Y
_ _ _ _ I Z _ _ _ _

z x

(12) (13)

We now want to reduce the set of normal foldings by a factor of two. Instead of
discriminating on the first crease (which must perforce turn downwards) we use the
second: consider figure (12)-(13). Here X, Y, Z denote the rest of the leaves after
the third, assuming p > 3. If figure (12) is rotated once backwards and turned up-
side down (out of the plane), the result resembles (13) except that its leaves (and its
tag) face down. This is remedied by undoing it, turning it over and doing it up again
in the same shape; the entire operation will then transform the set of normal foldings
whose second crease turns up (like (12)) into the set whose second crease turns down
(like (13)). So both sets contain the same number of foldings, G(p)/2p, the latter
must be an integer, and we have reduced the set of all foldings to the set of normal
foldings whose second crease turns up. Q.E.D.

The prime factors of G(p)/2p turn out depressingly large (table (35)), so that no
larger equivalence classes are possible.

The Ratio. The ratio G(p)/G(p - 1) is interesting (table (22)). It can be in-
terpreted as the average number of p-foldings derivable from a given (p - 1)-fold-

A MAP-FOLDING PROBLEM 195

ing by attaching a pth leaf (see next section). For even and odd p separately, it
appears monotone increasing to a pair of limits rather larger than 3; so it seems
reasonable to try fitting a pair of polynomials in l/p. [This is performed for sev-
eral polynomial degrees, and repeated as a check on sequences which are known
to converge and diverge.] The result is that for both polynomials the constant term
is very nearly 32, suggesting the conjecture that G(p)/G(p - 1) 3.

16~~~ 2

e e

15 bb
If1 f

-~~*
I c ~ ~~~~~~c \a

x ,

__ I I/

h I g Id h g d
l

* * *

(14) (15)

In an attempt to prove this, we reason thus. Let p be even and consider just
the right-hand half of an arbitrary (p - 2)-folding (see (14) where p = 16). This
half-folding is abstractly equivalent to an ordered rooted tree with lp nodes (figure
(15)): each 'm-crease' (immediately enclosing m gaps) corresponds to an 'm-node'
(at which there are m branches). [The correspondence is spoiled by the root node
a, complete with spurious extra branch. It is convenient to imagine an external
crease, enclosing the entire half-folding, to correspond to a; and a's extra branch
simplifies the definitions.] Suppose now that leaf (p - 1) appears in one of the
gaps, which will be enclosed by some m-crease (leaf 15 is enclosed by the 3-crease
b in (14)). Then there will be 1 + m choices for leaf p (4 choices for leaf 16), and
G(p)/G(p - 1) = the mean of 1 + m over the set of all (p - 1)-foldings.

We now make two assumptions, both of which are untrue: that in the set of all
(p - 2)-foldings, each distinct half-folding occurs equally often; and that each gap
of a given (p - 2)-folding is equally likely to be occupied by leaf (p - 1). Let
a(p, m) be the total of m-creases which occur in the set of all distinct half-foldings-
the total of m-nodes in the set of all ordered rooted hp-trees

(16) = -m-2

Then the mean of 1 + m = 1 + the mean number of gaps immediately within the
same crease as an arbitrary gap of an arbitrary half-folding

196 W. F. LUNNON

2P / 2P

=1+ a(p,m)m2/ a(p,m)m
1 1

(17) = 1+ [(;7p _ 1) + 2 p _ p-1

= 4p/p + 2 =G(p)/G(p-1) ?

Steps (16) and (17) require wads of binomial coefficient manipulation for their
proof; we shrink from inflicting this on the reader, since for one thing the estimate
we have derived is too high (table (33)). Its limit is 4.

As a check on the proceedings, we estimate the mean number of gaps per crease

iP / lp

1,a(p, m)m/ Ea(p, m)
1 1 p-2

1 1(()-(122)] = (p -1)/2P,

which is obviously true (independently of our assumptions) since there are p - 1
gaps and lp creases (including the imaginary one) in any half-folding.

The Algorithm. The foregoing remarks leave the computational problem of G(p)
unchanged: to enumerate (a subset of) all p-foldings. The most successful algorithm
will be described; it is a natural adaptation of the intuitive hand method. The basic
loop constructs and counts all i-foldings which can possibly be made by attaching
an ith leaf on the tail end of a given (i - 1)-folding, by searching for gaps in the ap-
propriate area of the (i - 1)-folding. Starting this loop on the trivial 1-folding
and calling it recursively down to level i = p, we get all possible p-foldings. A vector
FOR is kept : FOR(k) contains the number of the leaf in the next position after leaf
k in the current i-folding, so completely describing it, and new leaves are attached
by altering the entries in FOR.

1 1* 1L
___ 3ii 6 3 I

_ _ _4I 3 4I

51 26 ___ 5 1 2
2 62 2'2

(18) (19) (20) (21)

Consider (18), the FOR-vector for which is (22). Suppose that p > 6, and in the
course of the enumeration we have constructed the 5-folding shown. To construct
all (i = 6)-foldings of which it is the front, first set some j equal to 5. Then:

Insert leaf 6 between leaf j and the one in front, by setting FOR(6) = FOR(j)
and FOR(j) = 6. Count one more 6-folding, and call the construction recursively to
insert leaf 7. On return, reset FOR(j) = FOR(6) and step j on to the leaf joined to
FOR(j) on the right (left for odd i).

A MAP-FOLDING PROBLEM 197

Now repeat the last paragraph until FOR(j) = 5 again, when return to the level
above (i = 5).

k 0 1 2 3 4 5

FOR(k) 1 3 0 4 5 2

(22)

In (18), this process locates three gaps for leaf 6, j taking the values 5, 1, 4. The
resulting 6-foldings are (19)-(21). Notice that there is no need to search both down
and up from leaf 5; the algorithm automatically continues the search from the lower-
most gap (above leaf 2) to the uppermost (below leaf 1). This happy feature can be
extended: if leaf 1 is conventionally 'joined' to itself on the left, and a leaf 0 is in-
vented which is joined to itself at both sides, is before the top leaf (FOR(O) = 1 in
(22)), and is after the bottom leaf (FOR(2) = 0), then there is no longer any need to
test for the free edge of leaf 1 nor for the bottom of the folding: the previous algo-
rithm is sufficient. Figure (23) illustrates these modifications on (18).

0
l'0 0
3 1 D 1: __

0

(23) (24)

In order to compute G(p)/2p rather than G(p), leaf 1 is omitted and the right
edge of leaf 2 is joined to leaf 0 (figure (24)). This ensures that leaf 2 is always ac-
cessible from the exterior, and so can be joined to leaf 1 in position 1. To force the
second crease upwards, j is initialised to 0 instead of to 2 at the start of the search for
gaps for leaf 3 (there are only 2 of them anyway).

To speed the inner loop we do not actually insert leaf p; it is enough to just
count the gaps at this bottom level. All intermediate values of G(i), i < p, come out
in the wash instead of requiring separate calculation.

The Program. Three programs realising basically this algorithm were written by
the author for the Manchester Atlas I computer: an Atlas Autocode program, a
machine code program, and a machine code program in which the recursion was
'unwound' into a nest of p - 3 similar sequences. The third was 1.5 times faster than
the second, which was 7 times faster than the first. The factor of 7 is due largely to
the Atlas I modifier registers ('B-lines') being particularly suited to the algorithm,
whereas Atlas Autocode performs all assignments full-length using the accumulator.
The time taken is strictly proportional to the size of the answer G(p)/2p 9 basic in-
structions obeyed per folding constructed in the final program. At fixed intervals the

198 W. F. LUNNON

inner loop punches out the current j's and partial answers, together with a check
sum, from which the program can easily be restarted. Very little store is used, which
makes the program ideal for time-sharing with magnetic tape- and output-limited
jobs.

For p < 20, table (34) has been computed twice by the same program; but for 21
< p ? 24, there exists only a computation lasting 55 hours (46 useful), during which
undetected machine errors are known to have occurred at least five times. These
were probably digit-pairs dropping out of the store. In three cases they led rapidly
to a halt through the generation of an illegal address, and in two the computation
went into a characteristic loop in which the partial answers below a certain number
of leaves ceased to increase. This behaviour seems more probable than apparently
correct continuation, but suspicion remains. P. H. Robinson has also programmed
the problem for the PDP 8, which has nominal speeds much the same as Atlas but
was in practice 8 times as slow, owing to the restricted instruction code, etc. He con-
firms table (31) for p < 15.

In a lighter vein, we observe that for p = 24 the author's present program is
faster by a factor of a million than his first attempt, and by a spectacular 1016 than
another early program.

G(p) 4p Prime
p G(p) G(p - 1) p + 2 G(p)/2p Factors

0 0 0
1 1 12
2 2 2.00000 2.00 12
3 6 3.00000 1
4 16 2.66667 2.67 2 2
5 50 3.12500 5 5
6 144 2.88000 3.00 12 2.2.3
7 462 3.20833 33 3.11
8 1392 3.01299 3.20 87 3.29
9 4536 3.25862 252 2.2.3.3.7

10 14060 3.09965 3.33 703 19.37
11 46310 3.29374 2105 5.421
12 1 46376 3.16079 3.43 6099 3.19.107
13 4 85914 3.31963 18689 11.1699
14 15 57892 3.20611 3.50 55639 55639
15 52 02690 3.33957 1 73423 61.2843
16 168 61984 3.24101 3.56 5 26937 526937
17 565 79196 3.35543 16 64094 2.3.53.5233
18 1849 40388 3.26870 3.60 51 37233 3.1712411
19 6229 45970 3.36836 163 93315 5.151.21713
20 20502 28360 3.29118 3.64 512 55709 47.73.14939
21 69279 64218 3.37912 1649 510529 3.47.53.22073
22 2 29301 09884 3.30979 3.67 5211 38861 31.16810931
23 7 76921 42980 3.38822 16SS9 59630 2.5.223.757381
24 25 83605 86368 3.32544 3.69 53825 12216 2.2.2.7529.89363

(31) (39) (33) (34) (35)

THE MAXIMA OF Pr(n1, n2) 199

The author is indebted to C. F. J. Outred for, among other things, the notion of
rotation. The referee has pointed out that in the table for Pn (= G(n)/n in the present
notation) of [1, p. 397] the last entry should read 12198 instead of 12196. There are
further references in [1].

Department of Computer Science
University of Manchester
Manchester 13, England

1. J. TOUCHARD, "Contributions A P'6tude du prob1Wme des timbres poste," Canad. J. Math.,
v. 2, 1950, pp. 385-398. MR 12, 312.

The Maxima of P7(n,, n2)

By M. S. Cheema* and H. Gupta

1. In this note, we study the maxima of P(nli, n2), the number of partitions of
the vector (n1, n2) into exactly r parts (vectors) with positive integral components.

The generating function r(x1, X2) for P(nli, n2) is given by
co X0

(1.1)]I (1 - zX1klx2k2)1 = 1 + : Z rr (XI, X2)
ki,k2=1 r_1

(1.2) Or (Xl, X2) = 1 + E Pr(ni, n2)XliX2.
nl ,n2= 1

2. If qr(ni, n2) denotes the number of partitions of (ni, n2) into at most r parts
(vectors) with nonnegative integral components, then it follows that qr(ni, n2) =

P,(n1 + r, n2 + r). It is clear that qr(ni, n2) is an increasing function of r for 1 _ r
< ni + n2, and becomes constant for r _ ni + n2, on the other hand Pi(n1, n2) = 1
and Pr(nli, n2) = 0 for r > min (ni, n2). From the table of values of Pr(nli, n2) com-
puted by Cheema, we notice that for n, _ n2 > 0, there is a unique s such that

Pi(ni, n2) < P2(ni, n2) < * * * < P,,(ni, n2) _ P,+,(ni, n2) >_ * * * >
Pn,(ni) n2)

We use s in this sense in all that follows. The values of s were computed for all ni,
n2 < 50. We might remark that a similar conjecture holds for the number of parti-
tions of n into exactly r summands. An explicit formula for Pr(ni, n2) for general r is
not known, P,(ni, n2) do satisfy a recurrence relation and behave very much like a
polynomial in ni, n2, i.e., Pr(ni, n2) is a semipolynomial of degree r - 1 in ni and n2
relative to modulus rH as shown by Wright [2]. Thus

Ir tr

Pr(n1, n2) = f E /tl t2 12, n,2)ltl-ln2
ti=i t2=1

where f3(ti, t2, ni, n2) depends on r, tl, t2 and on the residues of ni, n2 to moduli 1, 2,
3, * * *, [r/t], but not otherwise on nli, nf2. A rough estimate for s is obtained by study-
ing the maxima of a function which behaves very much like Pr(n1, n2).

Received December 7, 1966. Revised June 29, 1967.
* Supported in part by NSF under GP 7470.

